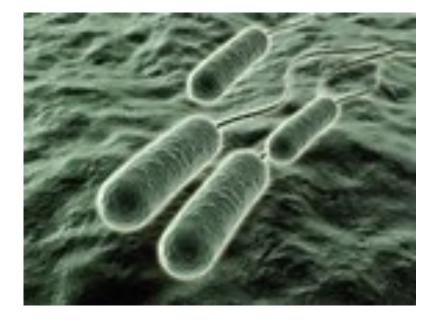


Use of Innovative Enzymatic Method for the Determination of Pseudomonas aeruginosa in Spas, Pools and Hospital Waters

Gil Dichter

World Wide Technical Support Manager, Water

- Introduction to microbiology of Pseudomonas aeruginosa
- Why test for Pseudomonas aeruginosa
- Methods
 - 15 Tube Most Probable Number MPN
 - Membrane Filtration Methods- USA & Europe
 - Pseudalert
- Studies
- Q & A



Properties of Pseudomonas aeruginosa

- Family- Pseudomonadaceae
- Ubiquitous in soil & water & most surfaces
- Gram negative rod; 0.5 to 0.8 µm by 1.5-3.0 µm
- Catalase and Ctyochrome oxidase positive
- Single polar flagella
- Requires minimal nutrition needs
- Can resist high levels of chlorine
- Can form biofilms

Electron Microscope Picture of Pseudomonas aeruginosa

Why Test for Pseudomonas aeruginosa

- An opportunistic pathogen
 - Can infiltrate wounds
 - Weak immune systems
 - Elderly
 - Patients with severe burns
- Thrives at elevated temperatures; grows at 42°C
- Can result in
 - Swimmer's ear
 - Skin rash
 - Urinary Tract Infection
 - Gastrointestinal infection
 - Rare instances-pneumonia

Pseudomonas aeruginosa skin rash

Pool – Spa

- Pools = a structure that is filled with water and used for swimming
- Spas = a structure that is filled with water and used for relaxation or invigoration (high temperature)

Regulatory – Pools/Spas

- Regulations for testing vary by country
- Most testing is performed due to a suspected cause of illness
- US Pool/Spa regulations are sporadic and may be at the state, county or regional/city level
- Most US labs use <u>Standard Methods</u> 9213

Methods

Methods for Pseudomonas aeruginosa

ISO	16266	

(2006)

(2 + 6 days)

Membrane Filtration: bottled water 250mL. other water 100mL

PACN agar $36 \pm 2^{\circ}C$ for 44 ± 4 h $(1^{st} read at 22 \pm 2 h)$

confirmation (non-green only): nutrient agar $36 \pm 2^{\circ}C$ for $22 \pm 2h$

oxidase test (red-brown)

King's B medium (oxidase +) $36 \pm 2^{\circ}C$ for up to 5 days

Acetamide broth (red-brown, fluorescent) $36 \pm 2^{\circ}C$ for $22 \pm 2h$ Add Nessler reagent (contains Hg) Look for gas production (NH4+)

Positive control: P. aeruginosa NCTC 10332 Negative control: Escherichia coli NCTC 9001

EN 12780 (2007)(2 + 1 days)

MF: mineral & Bwater 250mL. potable / pool water 100mL

PACN agar $37 \pm 1^{\circ}$ C for 44 ± 4 h

 $(1^{st} read at 22 \pm 2 h)$

confirmation (non-green only): milk agar w/Centrimide $37 \pm 1^{\circ}C$ for $22 \pm 2h$

oxidase test

Positive control: P. aeruginosa NCTC 10662 Negative control: Escherichia coli NCTC 9001

MoDW (2002)(2 + 1 days)

> MF: treated water 100mL. other water less (aim for 20-80 cfu)

confirmation (all): milk agar 37°C for 24 h

Standard Methods/AWWA (2005) 9213E

(3 + 1 days)

m-PA agar

natural water 200mL,

pool water ≥500mL

(aim for 20-80 cfu)

 $41.5 \pm 0.5^{\circ}$ C for 72 h

MF:

DIN 38 411 (1983)

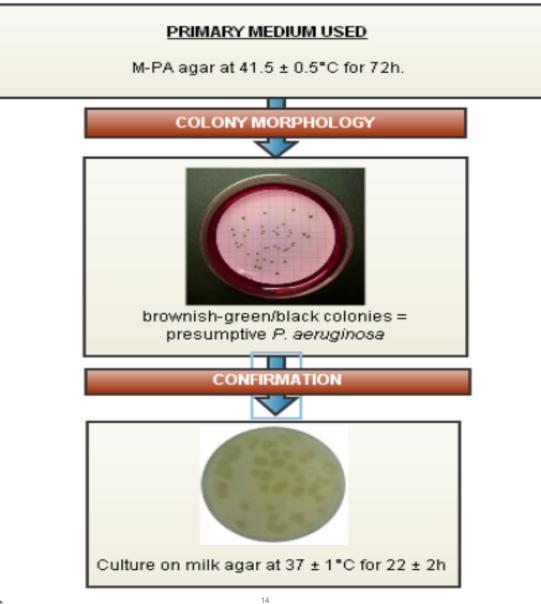
confirmation: # of typical and atypical, up to lab: milk agar $35 \pm 1^{\circ}$ C for 24 h

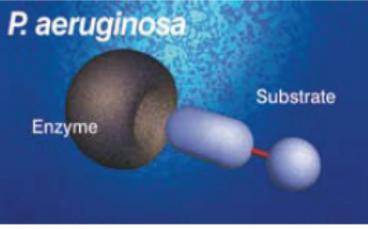
Multiple Tube Fermentation (MTF) Most Probable Number (MPN)

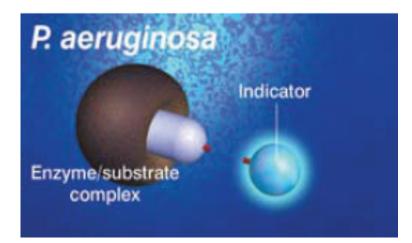
Standard Methods- 9213F MPN Test

- Presumptive test is either 5 tube X 10 mL or 15 tube (10 ml, 1 mL and 0.1 mL - 5 tubes for each dilution)
- Asparagine broth is the presumptive test and Acetamide broth is for confirmation
- 24 48 hours at 35-37°C presumptive test
 - Presumptive is green fluorescence under a 365 nm UV light
 - **Confirmation** is a purple color within 24-36 hours at 35-37°C


Membrane Filtration


Membrane Filter Apparatus




Pseudalert 24 Hour Test

Pseudalert

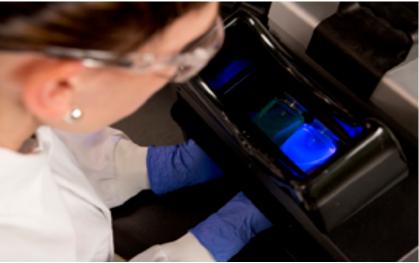
Pseudalert is based on Bacterial Enzyme Technology



Presence- Absence or Quantification Testing

Procedure for either P/A or Quantification **Pseudalert** Sample

Add Reagent to


Mix well to Dissolve

Incubate and read results with a UV lamp at 365 nm

24-28 hours at 38± 0.5°C

Record results as P/A

Quantification

Add powder and mix.

Pour into Quanti-Tray. Seal Quanti-Tray.

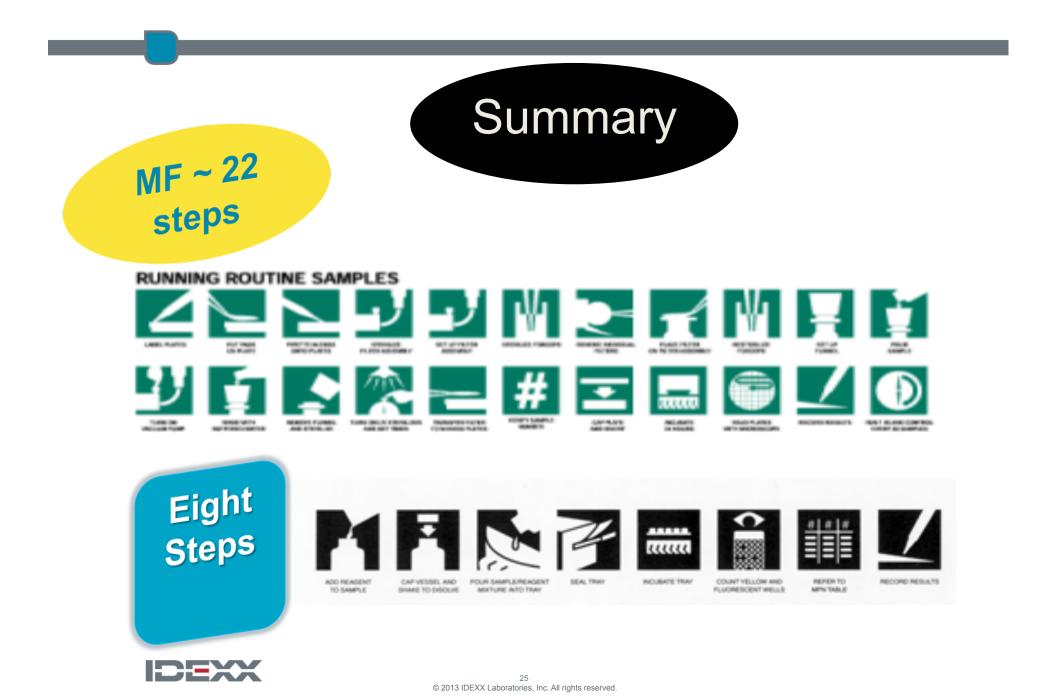
Incubate and read results with a UV lamp at 365 nm

24-28 hours at 38± 0.5°C

Record positive wells

IDEXX 51-Well Quanti-Tray® MPN Table

No. of wells giving	MPN	95% Confidence Limits		
positive reaction	per 100 ml sample	Lower	Lower Upper	
0	<1.0	0.0	3.7	
1	1.0	0.3	3.6	
2	2.0	0.6	7.3	
3	3.1	1.1	9.0	
4	4.2	1.7	10.7	
5	6.3	2.3	12.3	
6	6.4	3.0	73.9	
7	7.5	3.7	10.5	
8	8.7	4.5	17.1	
9	9.9	5.3	18.8	
10	11.1	6.1	20.5	
11	12.4	7.0	22.1	
12	13.7	7.9	23.9	
13	15.0	8.8	25.7	
14	16.4	8.8	27.5	
15	17.8	10.6	29.4	
16	19.2	11.9	31.3	
17	20.7	13.0	33.3	
18	22.2	14.1	35.2	
19	23.8	15.3	37.3	
20	25.4	16.5	39.4	
21	27.1 28.8	17.7	41.6 43.9	
23	30.6	20.4	43.9	
20	30.6	21.8	48.7	
	2.0.1		10011	
25 26	34.4	23.3 24.7	51.2 53.9	
20	38.4	29.7	56.6	
28	40.6	28.0	59.5	
29	42.9	29.7	62.5	
30	45.3	31.5	65.6	
31	47.8	33.4	68.0	
32	50.4	35.4	72.5	
33	53.1	37.5	76.2	
34	66.0	39.7	80.1	
35	69.1	42.0	84.4	
36	62.4	44.6	88.8	
37	65.9	47.2	93.7	
38	69.7	50.0	99.0	
39	73.8	53.1	104.8	
40	78.2	66.4	111.2	
41	83.1	59.9	118.3	
42	88.5	63.9	126.2	
43	94.5	69.2	135.4	
44	101.3	73.1	146.0	
45	108.1	78.6	158.7	
46	118.4	85.0	174.6	
47	129.8	92.7	195.0	
48	144.5	102.3	224.1	
49	165.2	115.2	272.2	
50	200.5	135.8	387.6	
51	> 200.5	148.1	intinte	


IDEXX Sales and Technical Support 1-800-321-0207 or 1-207-856-0496 www.idexx.com/water

· · · · · · · · · · · · ·

Quick Reference Guide

IDEXX Beta Trial report 14A. October 2010. Comparison of the performance of the Pseudalert test against SM 9213E (m-PA) from pool/spa water samples.

Beta Trial Report 14A con't

- Performed by an independent lab that regularly tests pools and spas.
- One thousand and eight pool & spa samples were evaluated against Standard Methods 9213E, m-PA.
- Pseudalert found to be equivalent to SM 9213E.
- Pseudalert able to recover very low concentrations (as low as 1/100 mL).
- High background flora (57000/mL) did not interfere
- Seventeen samples were found positive out of the total tested.

Beta Trial report 14A con't

		SM 9213E		
		+	-	
Pseudalert	+	17	2	19
	-	3	986	989
	Total	20	988	1008

Beta Trial 14B con't

- Performed by an independent lab that tests pools and spas in Europe.
- Pseudalert was found to be equivalent to the ISO 16266 MF method for pool and spa samples. A p value (=/> 0.05) calculated = 0.082.
- A total of 86 samples were tested -16 natural samples were positive. Seventy samples were spikes with strains of P. aeruginosa.
- Pseudalert detected and quantified P. aeruginosa even in the presence of very high bacteria population (>1120 CFU/mL).
- Pseudalert accurately detected very low levels of P. aeruginosa (as low as 1/100mL).

Evaluation of an MPN Method for the Rapid Enumeration of *Pseudomonas aeruginosa* **from Swimming Pool and Spa Waters: David Sartory**

- Compare the recovery of *Pseudomonas* aeruginosa by Pseudalert/Quanti-Tray to that by PACN agar (ISO 16266)
- Originally intended to use routine samples from swimming pools and spa pools
- Additional samples of swimming pool and spa pool waters inoculated with *Pseudomonas* aeruginosa
- Spiking trials undertaken by 6 UK laboratories and 1 German laboratory

Results

- 481 paired results: 23 were removed (>the upper limit for method)
- 458 paired counts for analysis
 - PACN mean CFU count = 39
 - Pseudalert mean MPN count = 45
 - Relative mean difference (ISO 17994) = 0.4
 (CI 6.9 to + 6.1)
- ISO 17994 analysis revealed equivalent results between methods

Use of Pseudalert and Quanti-Tray for the Detection of *Pseudomonas aeruginosa* in 24 Hours for Spa Waters by a Private Lab

- Seventy spa samples were evaluated from public spas.
- Comparison of Pseudalert against Standard Methods 9213E, m-PA.
- One sample was positive and all the other samples were spiked with 3 different concentrations of an ATCC Pseudomonas strain (low, mid & high).
- Mean values: Pseudalert = 36.7/100mL and MF = 33.8/100 mL (n = 39)
- Pseudalert is a suitable alternative for testing with results in 24 hours and no confirmation required.

Hall, N. et al. (2011) Incidence of *Pseudomonas aeruginosa* in Private Spa Water. Presented at the World Aquatic Health Conference, Seattle, WA

- Spa samples consisted of 65 private spas and 12 public spas.
- Pseudalert test was compared to Standard Methods 9213F.
- Pseudalert test was found to be equivalent to Standard Methods
 - Sensitivity : 94.5%
 - Specificity: 100 %
- Sixty three % of private spas were positive and may pose a threat.

Conclusions

- Based on the studies presented, Pseudalert performs as well as the existing US and European methods in 24 hours and confirmation is not required.
- A number of labs both in the US and in Europe are now using Pseudalert for their everyday testing
- It can be performed either as a Present-Absence test or Quantification.

Thank you Questions

